Engineering Yarrowia lipolytica for Campesterol Overproduction

نویسندگان

  • Hao-Xing Du
  • Wen-Hai Xiao
  • Ying Wang
  • Xiao Zhou
  • Yu Zhang
  • Duo Liu
  • Ying-Jin Yuan
  • Thierry Chardot
چکیده

Campesterol is an important precursor for many sterol drugs, e.g. progesterone and hydrocortisone. In order to produce campesterol in Yarrowia lipolytica, C-22 desaturase encoding gene ERG5 was disrupted and the heterologous 7-dehydrocholesterol reductase (DHCR7) encoding gene was constitutively expressed. The codon-optimized DHCR7 from Rallus norvegicus, Oryza saliva and Xenapus laevis were explored and the strain with the gene DHCR7 from X. laevis achieved the highest titer of campesterol due to D409 in substrate binding sites. In presence of glucose as the carbon source, higher biomass conversion yield and product yield were achieved in shake flask compared to that using glycerol and sunflower seed oil. Nevertheless, better cell growth rate was observed in medium with sunflower seed oil as the sole carbon source. Through high cell density fed-batch fermentation under carbon source restriction strategy, a titer of 453±24.7 mg/L campesterol was achieved with sunflower seed oil as the carbon source, which is the highest reported microbial titer known. Our study has greatly enhanced campesterol accumulation in Y. lipolytica, providing new insight into producing complex and desired molecules in microbes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction

BACKGROUND Limonene, a monocyclic monoterpene, is known for its using as an important precursor of many flavoring, pharmaceutical, and biodiesel products. Currently, d-limonene has been produced via fractionation from essential oils or as a byproduct of orange juice production, however, considering the increasing need for limonene and a certain amount of pesticides may exist in the limonene obt...

متن کامل

Recent advances in bioengineering of the oleaginous yeast Yarrowia lipolytica

The oleaginous yeast, Yarrowia lipolytica, is becoming increasing popular for metabolic engineering applications. Advances in synthetic biology and metabolic engineering have allowed microorganisms such as Y. lipolytica to be tailored for specific chemical production. Significant progress has been made to understand the genetics of Y. lipolytica and towards developing novel genetic engineering ...

متن کامل

Combinatorial Engineering of Yarrowia lipolytica as a Promising Cell Biorefinery Platform for the de novo Production of Multi-Purpose Long Chain Dicarboxylic Acids

This proof-of-concept study establishes Yarrowia lipolytica (Y. lipolytica) as a whole cell factory for the de novo production of long chain dicarboxylic acid (LCDCA-16 and 18) using glycerol as the sole source of carbon. Modification of the fatty acid metabolism pathway enabled creating a pool of fatty acids in a β-oxidation deficient strain. We then selectively upregulated the native fatty ac...

متن کامل

A molecular genetic toolbox for Yarrowia lipolytica

BACKGROUND Yarrowia lipolytica is an ascomycete yeast used in biotechnological research for its abilities to secrete high concentrations of proteins and accumulate lipids. Genetic tools have been made in a variety of backgrounds with varying similarity to a comprehensively sequenced strain. RESULTS We have developed a set of genetic and molecular tools in order to expand capabilities of Y. li...

متن کامل

High-throughput transformation method for Yarrowia lipolytica mutant library screening.

As a microorganism of major biotechnological importance, the oleaginous yeast Yarrowia lipolytica is subjected to intensive genetic engineering and functional genomic analysis. Future advancements in this area, however, require a system that will generate a large collection of mutants for high-throughput screening. Here, we report a rapid and efficient method for high-throughput transformation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016